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IDENTIFIABILITY IN THE LARGE OF A LINEAR HEAT-CONDUCTION EQUATION 

SUBJECT TO CAUCHY BOUNDARY CONDITIONS 

M. R. Romanovskii UDC 536.2:517.941.4 

The feasibility of simultaneously determining constant values of the specific heat, 
thermal conductivity, and heat-transfer coefficient from observations of a unique 
temperature field is studied, 

An important problem in the theory of experimental design is the formulation of condi- 
tions such that the number of unknowns can be maximized for a given volume of measurements. 
In the practice of thermophysical investigations [I, 2] the comprehensive determination of 
the properties of a body is usually limited to two coefficients: the specific heat and the 
thermal conductivity. ExKending the statement of the problem, we now explore the feasibility 
of simultaneously determining the values of the specific heat, thermal conductivity, and heat- 
transfer coefficientfrom observations of a unique temperature field. 

To solve this problem we use an approach proposed earlier [3]. It is based on an in- 
vestigation of the one-to-one correspondence between the unknown parameters and the state func- 
tion of the model in question. Then the determination of the class of temperature fields for 
which the one-to-one correspondence fails could provide the basis for simultaneously identi- 
fying several parameters of the thermal model according to the conditions for the elimination 
of observations of an unidentifiable state. From the point of view of uniqueness of the so- 
lution of inverse coefficient problems and within the framework of linear models the present 
study continues work begun earlier [4], where it was proposed that the conditions for preser- 
vation of the one-to-one correspondence be specified as identifiability in the large and the 
family of coefficients corresponding to one particular solution of the boundary-value problem 
was expressed as an ambiguity subset. 

We now consider a linear heat-conductlon equation whose associated boundary conditions 
contain unknown coefficients. Let it be supposed that the following boundary-value problem 
is given in the domain of variation of the independent variables QT = {(x, t) : 0 < x < I, 
0 < t < T}: 

Ou O~u 
a~ Ot = a~ --Ox~ + f (x, t), (x, t) E q r  , 

ult=o = ~ (~, O < x < l ,  

Ou = 0 ,  O < t < T ,  (1) (ul =o - Vo)- a2 

a Ou [ 
as (ul~=, -- vl) + 2 - -  = Ox ]~=a O, O < t < T ,  
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where f (x l  t ) 6 C  2'1 (QT), ~(x)CC2[ 0, 1], Vo,l( t)CO[O, T ] a r e  known d i f f e r e n t i a b l e  f u n c t i o n s ,  and a l , a , z  = 
const > 0 are the thermophysical coefficients: specific heat, thermal conductivity, and heat- 
transfer coefficient. 

It is assumed that =he initial data of the model (i) satisfy the requirements of =he 
existence of a unique differentiable solution. In this ease the failure of one-to-one cor- 
respondence between the coefficients a~,2,3 and the temperature field u(x, t) is expressed 
in the following theorem. 

THEOREM i. A solution of problem (i), unidentifiable in the large, has the form 
t 

, u * - - p - ~ f * ( x ,  ~ ) d ~ §  (x, t)EQr, (2) 
for the existence of which the necess~ and sufficient conditions are: specification of a 
family 

~la l - -a~  = ~9 ,  ~2a~--a~ = 0, (3) 

consistency of the boundary conditions 

[ d~ I =vdt=o, (4) ~!.:o - -  G ~ x : o  

and satisfaction of the following conditions by the function f*: 

OZf * Of* _ h , (x, t) CQr,  (5) 
Ot Ox z 

/*It=0 =)~lP --,d2q) 0 < X <  l, (6) 
dx z 

0[* ~=o = 9  dVOd___t_, 0 < t < T ,  (7) t*lx=o - -  h - ~ x  

dv~ [*1~=, + Xo Of* = P  O < t <  T, (8) 
" Ox x=1 dt ' 

where X t , a ,  P = const. 

Proof of the Theorem ~ Necessity. Let us assume that two vectors a~a ", where j'= {~2, 
as, as!}, correspond to a single solution u* ~, t)EC 2"I (Qr). Then we can deduce 

Ou* 
( a l  - -  ad 

at Ox 2 

ou* i 
(a~ -- a;) (u*b=o -- Vo) = (a; -- a;) - ~ x  Ix=o' 

(a3 - -  a;) (u*fx=l - -  vl) = - -  (a2 - -  a2) 0.* I 

- (a; - a;) O~u--2-, (x, t) E Qr, 

0 < t < T ,  

0 < t < T .  

From this result we infer linear dependence of the differential terms of the given problem 

_ _ ,  0 2u* o.* = h _ _  (x , t )  EQr (9)  
Ot Ox 2 ' 

and the terms of the boundary conditions 

u*l~=o - -  Vo = ~2 Ou* 0 < t < T; (10) 
' O X  x ~ O  ~ 

~ , [ x = l  _ _  U1 ~___. _ _  ~, 2 OU* 0 < t < T .  
OX x=l ' 

We use (9) to transform the initial heat-conduction equation to the form 
0u* - - = p - V ,  (x,t)EQr, 
at 

(Ii) 
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where the expression 

9 = a l -  ~ (12) 

determines the nature of the relationship between the specific heat and thermal conductivity 
coefficients of problem (i) generating the unidentifiable temperature field (2). 

Substituting the solution (2) into condition (9), we obtain 

t 02[ dT+~lo  dz~ (X, t) EQT, f f 
J O~ ' dx --'~ ' o 

whence we a r r i v e  a t  (5) and 
t i o n  ( 2 ) ,  we f i n d  

(13 )  

(6). Applying the boundary operators in succession to the func- 

dvo ] - - a .  Of = 0 ,  O < t < T ,  
as f[.~=o--P dt / ~ Ox ~=o 

" Of 
a3(fl~=~ - - p - - ~  J + , - ~ x  ~= ~ =0,  O < t < : T ,  

dq~ t ----0, c ~  ( m l ~ = o  - -  volt=o) - -  as ~ x=o 

I 

dX Ix=l 

These expressions are transformed to (7), (8), and (4), and the coefficients of the boundary 
conditions turn out to be related by the equation 

%~a8 - -  a2 = O. (14) 

Thus, from the hypothesis of the existence of different coefficients corresponding to 
the same solution we deduce the satisfaction of conditions (3)-(8). 

Sufficiency. In the domain QT let us consider the function 

~v(x, t) - Ou X 02u a~ 1 ax~ c c"-,, (Qr), 

whose existence and differential properties follow from the differentiability of the solution 
u(x, t)EC 2,~ (QT) and f(x, t)EC2,1~T).Now, applying the operators ~/St and ~2/~x= to the heat-con- 
duction equation and then comparing the results according to (5), we obtain the homogeneous 
equation 

aw a2w (x, t) E QT �9 
a~ at = a~ Ox---- ~ , 

If we choose from the set of coefficients of problem (i) those which are interrelated by con- 

dition (12), then the function w(x~ t) is expressed in the same way as w = ([--~,19 al 
\ 

or w = klf -- ~IP -~- 

(14), we obtain 

a~. From these two expressions, given the satisfaction of (6)-(8) and 

alt=o = O, O < x - <  1, 

wlx=~ [x=o=O' 0</<T, 

wig=l+  2---~- x = 0 ,  O < t < T .  
X x = l  

Hence it follows that the function w(x, t) is identically zero and so condition (9) holds. 
The linear dependence of (I0) is inferred directly from the boundary conditions with regard 
for (14). 
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To demonstrate the sufficiency of conditions (9) and (10) for violating the one-to-one 
correspondence we analyze the functional 

From the condition for its minimum we determine the vector a for which the specified function 
u(x, t) is a solution of problem (I). In this ease the satisfaction of (9) and (i0) implies 
a linear dependence of the equations of the system expressing the minimum of the functional 
J(a). Consequently, a nonunique vector a exists, corresponding to one solution of the stated 
problem. This completes the proof. 

We now analyze the foregoing results. Conditions (3)-(8) indicate when, and only when, 
a one-to-one correspondence does not exist between the coefficients of the investigated model 
and its state fiunction. Here the requirement of satisfaction of (4)-(8) is necessary in order 
for the family (3) to describe the ambiguity subset of problem (1) and for its solution to be- 
long to the subspace of unidentifiable functions. Then the failure of at least one of these 
conditions will imply uniqueness of the relation between the coefficients a~,2,3 = const and 
the temperature field u(x, t)6C 2, I(~T). From this result we infer the possibility of simultane- 
ous identification of constant values of the specific heat, thermal conductivity, and heat- 
transfer coefficient if the observations are not made on temperatures of the form (2). Other- 
wise a soltuion of the inverse problem for the model (i) is obtainable only correct to within 
the family (3). 

From the point of view of invariant properties, the existence of the family (3) implies 
that the temperature field can remain unchanged if (4)-(8) are satisfied and if the thermo- 
physical properties of the bar and the heat transfer at its boundaries are transformed ac- 
cording to (3). For example, the solution of problem (i) with the initial data a~ = 3, ~2 = 
i, as = ~, f = I, ~ = x(x -- i), vo,1 = t + ~-~ is preserved for any variations of a > O. 

It follows from the form of the family (3) that the solution (2) is invariant under the 

transformation a[ al + c, a2 a~ + c%:, a3 c~3 -~ Ckl --__ __-- = ---, C = consf, which represents the translation 
12 

group acting on the set of coefficients of the boundary-value problem (i). 

In contrast with the problem statement discussed previously [4] with a domain of defini- 
Eion that does not depend on the unknown coefficients~ the parameters of the family (3) are 
not always unique. The value of 12 is arbitrary if the function f* satisfies Eq. (5) sub- 
ject ~o the conditions 

I r i O[* _ O[* =0, 0<t<2T; /*lt=odx=('% 
Ox ~=o Ox 1~=i o 

with which are associated the boundary functions 

t 1 z 

0 0 0 0 

and the initial temperature distribution 

q) --- %?-tp -1 ' f*lt=o dzd~ + c, 0 <2 x ' <  I, 

where c and v are arbitrary constants.~ 0 Then at any time the solution of problem (I) will 
have the form 

0U*0x . = o =  du*0x ~=~ = 0 ,  O < t < T .  

In such cases it is impossible to indicate the heat-transfer coefficients a3 unambiguously. 
Consequently, the ambiguity subset of problem (I) can contain a nonunique family. 

The following consequence of the form of the family (3) is important in practice. 

COROLLARY i. If the heat-transfer coefficients a3 is given, the model (i) is identi- 
fiable in the large for any values of f, ~, and ve,t that ensure the existence of a unique 
temperature field. 
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In the given situation we have expressed the possibility of uniquely determining the 
specific heat and thermal conductivity when the inverse problem is generated by Newton's for- 
mulation with a known heat transfer at the boundary. 

Also important for the solution of applied problems is the following. 

COROLLARY 2. The ambiguity subset of problem (i) for arbitrary values of the function 
f ~ 0 is empty if constant boundary functions vo,, and a linear initial distribution ~ are 
given. 

The corollary, like the preceding results, can be used as a basis for selecting experi- 
mental arrangements aimed at the simultaneous determination of several thermophysical para- 
meters. For example, the temperature field needed for identfying simultaneously by means of 
the model (I) the specific heat, thermal conductivity, and heat-transfer coefficient of a 
bar with a uniform initial state and a constant ambient temperature can be created by any in- 
ternal heat source, including Joule heat with a constant power. 

Of unquestionable~interest for the theory of inverse problems is the solution of the 
problem of whether it is possible to determine both the thermophysical properties of a bar 
and the heat fluxes at its boundaries. Theorem 1 shows that if the temperature field is iden- 
tifiable in the large, then the model (i) admits simultaneous identification of the thermo- 
physical properties and boundary heat fluxes. We thus arrive at the following. 

COROLLARY 3. For the simultaneous determination of the specific heat, thermal conducti- 
vity, and boundary heat fluxes of the model (i) it is necessary that the observed temperature 
field be identifiable in the large. 

In the special case when an experiment is based on the model of transient symmetrical 
heating of a bar with a thermally insulated side surface 

Ou = a 02u + f (x, t), (x, t) E QT , 
al a t -  2 ax 2 

ult=o = qD (x), 0 < x < l ,  

Ou = 0, - -  a2 = q ( t ) ,  0 < t < T ,  
OX x~O x = l  

the set of parameters {at,2, q} can be determined if the observed temperature field does not 
belong to the subspace of unidentifiable solutions described by the quadrature (2). This re- 
suit attests to the possibility of simplifying considerably the technological configuration 
of the experiment by including difficult-to-measure quantities such as, for example, the heat 
fluxes admitted to the object and its thermophysical properties among the unknown parameters. 

Having investigated a model with homogenous boundary conditions, we now turn to a formu- 
lation with inhomogeneities at the boundaries. Let it be supposed that the following model 
is given in the domain QT = {(x, t) : 0 < x < i, 0 < t < T}: 

Ou 02u 
al Ot -- a~ Ox---- ~ + f (x, t), (x, t) ~ Qr , 

ult=o = ~ (x), 

a#tlx=O - -  a~ Oft 
0X x=o 

~ I a3ulx=l + a2 ~ x=l 

whe re  f ( x ,  t )EC  ~,1 ~ r ) ,  ~P(x) CCS[ O, 11, qo,1 (t)~C[O, T] 
ing is pertinent to the given problem. 

THEOREM 2. 

O < x < l ,  

= qo (t), O < t < T ,  (15) 

= qx (t), O < t < T ,  

are known functions In this case the follow- 

A solution of problem (15), unidentifiable in the large, has the form 

t 

u* ---- pF 1 ,I [* (X, "~)dT -}- q~ (x), (x, t)CQT, (16) 
0 
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for the existence of which the necessary and sufficient conditions are: 
family 

)~1at -- a2 = )hP~, %~aa - -  a2 = P2, 

and satisfaction of the conditions 

O~f* Of* _ x~ , (x, t) ~ Qr , 
Ot Ox 2 

f* l t=o  = )VlP, ~ ,  dzq) 0 < x < 1, 
dx z 

specification of a 

/ * l ~ = o - - L ~  Of*Ox ~=o = 0 '  O ~ t ~ T ,  

~2 Of* = 0 ,  O ~ t ~ T ,  

qo = P2 Of* dT q- 9'2 0 < t % T,  
Pl o OX x=o dx !x=o 

qi = - -  - -  ~ d-c - -  p2 --d~- x , O < t < T ,  
~ 1  x =  i x =  1 

dcp I %2 dq) = O, q ~ l * = o - - X ~ - ~ X  ~=o = O, q~ q- dx x=I 

where at,=, 01,a = const. 

The theorem can be proved by a scheme similar to the one used in the case discussed 
above. 

The results obtained in Theorem 2 indicate that inhomogeneities in the boundary condi- 
tions as well as in the heat-conduction equation do not exclude instances of the failure of 
one-to-one correspondence. Consequently, the requirement of inhomogeneity of the mathematical 
model is not a sufficient condition for identifiability. The final answer can only be given 
by the properties of the observed temperature field, which, in order for the solution of the 
inverse problem to be unique, must not be described by the quadrature (16). 

The formulation of a problem of the form (15) makes it possible to investigate an impor- 
tant practical experimental arrangement for the determination of thermophysical properties, 
which is expressed by the heat-conduction equation and Cauchy-type boundary conditions: 

8u 02u 
a ~ - -  = - -  (x, t) q Qr  , 

Ot a2 Ox 2 , 

ub=o = q) (x), O < x < l ,  

a Ou I Ou I 
- -  2-- --~X x = l  

ox 1~=o = qo (0,  - ~,~ = q, (t), o < t < r .  

In this case homogeneity of the boundary conditions, i.e., qo,1 - 0, is necessary and suffi- 
cient for the existence of a solution u* unidentifiable in the large. Accordingly, we have 
the following. 

COROLLARY 4. A homogeneous linear heat-conduction equation is identifiable in the large 
if at least one inhomogeneous Cauchy boundary condition is given. 

This result shows that the familiar method of a surface source [I, 2] can be used to 
determine both the specific heat and thermal conductivity from observations of a unique field. 
It is possible in this connection to reduce considerably the volume of experimental investiga- 
tions and measurements by solving the appropriate inverse problem. I= must be noted that the 
subject here is the conceptual possibility of simultaneous identification, because the preser- 
vation of one-to-one correspondence does not preclude other cases of ambiguity of the solu- 
tion of inverse problem such as, for example, those associated with the discreteness of the 
observations. 
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Summarizing the results, we draw =he following conclusions. In the experimental inves- 
tigation of heat-transfer processes on the basis of a limited volume of initial data it is 
possible to determine simultaneously a set of parameters that do not violate the one-to-one 
correspondence with given observations. The experimental assurance of the conditions neces- 
sary for this objective permits the specific heat and thermal conductivity to be determined 
simultaneously without using volume heat sources, or likewise the thermophysical properties 
and transient boundary heat fluxes, and additionally the heat-transfer coefficient to be re- 
constructed. What this means in practice is the possibility of enlarging the volume of in- 
formation obtainable in the interpretation of experimental results by conventional methods. 
It must also be borne in mind that among the solutions of the heat-conduction equation there 
exists a Subset that imparts ambiguity to the determination of the coefficients of the mathe- 
matical model. The existence of that subset is attributable to the invariant properties of 
the solution of the boundary-value problem with respect to its coefficients. The resulting 
necessary conditions for the existence of an unidentifiable temperature field can be applied 
directly in practice. 

NOTATION 

x, space coordinate; t, time; QT, domain of independent variables; T, upper time limit; 
a,, specific heat; az, thermal conductivity; aa, heat-transfer coefficient; f, power of volume 
heat sources; ~ , initial temperature distribution; vo,~, boundary functions; q, qo, q~, heat 
flux; u, temperature field; u*, unidentifiable state; 1~,2, P, 01, 02, parameters of family 
from ambiguity subset; C ~, C 2, C2'*,,classes of differentiable functions. 
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MATHEMATICAL SIMULATION OF THERMOGRAVITATIONAL CONVECTION 

IN SOLIDIFICATION OF LIQUID STEEL 

Yu. A. Samoilovich, L. N. Yasnitskii, 
and Z. K. Kabakov 

UDC 536.25:621.746 

The thermal and hydrodynamic phenomena accompanying crystallization of liquid steel 
are analyzed numerically. 

It is well known that the major portion of defects in castings develop during the phase 
transition of the alloy from the liquid to the solid state. Direct experimental study of the 
thermal and especially the hydrodynamic phenomena accompanying the steel crystallization pro- 
cess is difficult because of the thermal and chemical aggressiveness of liquid steel. Thus, 
the role of mathematical simulation becomes important in study of this process. 

Metallic alloys are inclined to produce dendrite forms of crysnal growth, leading to 
formation of a two-phase zone which is a mixture of liquid alloy and branches of the growing 
dendrites. Thus, within the solidifying alloy one can always distinguish three regions with 
different aggregate metal states -- a zone of completely solidified metal, a zone of liquid 
alloy, and a two-phase zone separating the former ones (Fig. i). 
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